10. Vorlesung "Grundlagen der Produktgestaltung"

Inhalt und Termine, WS 2008/2009

Kapitel 1 Einführung

21.10.
 Einführung

28.10. 2. Beispiel "Intelligentes Herbizid", Miniprojekt "Produkt-Analyse"

Kapitel 2 Grundlegende Prinzipien

04.11. 3. Film "Produkt-Gestaltung"

11.11. 4. Film "Produkt-Gestaltung"

18.11. 5. Film, Produkt-Gestaltung", Grenzflächen, Benetzung, Kapillardruck,

25.11. 6. Innovationsmanagement

02.12. 7. Rollenspiel

09.12. 8. Konzeptuelle Produktgestaltung

Kapitel 3 Beispiel "Kristallisation"

16.12. 9. Thermodynamisches Gleichgewicht

13.01. 10. Kristallographie, Habitus

20.01. 11. Keimbildung, Wachstum, Partikelgrößenverteilung

27.01. 12. Auslegung und Betrieb von Kristallisatoren,

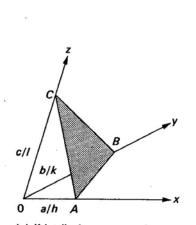
Kapitel 4 Beispiel "Kolloidale Systeme"

03.02. 13. Eigenschaften und Anwendungen von kolloidalen Systemen, Stabilität

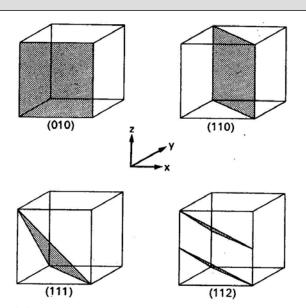
1

10.02. 14 Wechselwirkungen, DLVO-Theorie, Aggregation

login: student pwd: materialien_tvt


1. Kristallographie

Wozu?


In der Technik können kristallographische Kenntnisse dazu dienen,

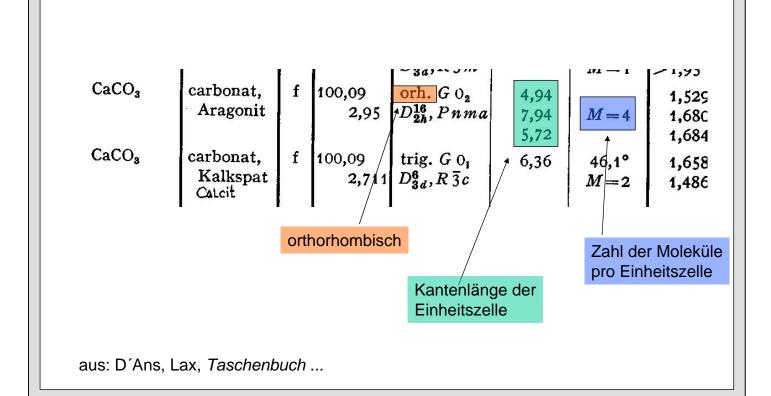
- Hypothesen zur Entstehung von Kristallformen aufzustellen
- Kristallformen gezielt zu beeinflussen

Indizierung von Kristallflächen

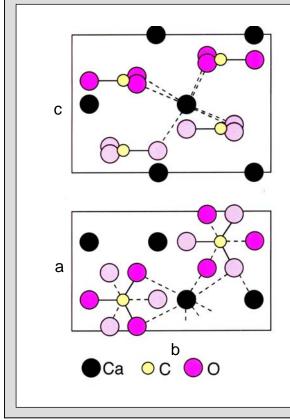
(a) Kristallachsen x, y und z, die durch eine Kristallfläche geschnitten werden.

(b) Millersche Indizes der Ebenen in einem kubischen Gitter.

aus: Moore, Hummel Physikalische Chemie, 1983


Kristallsysteme

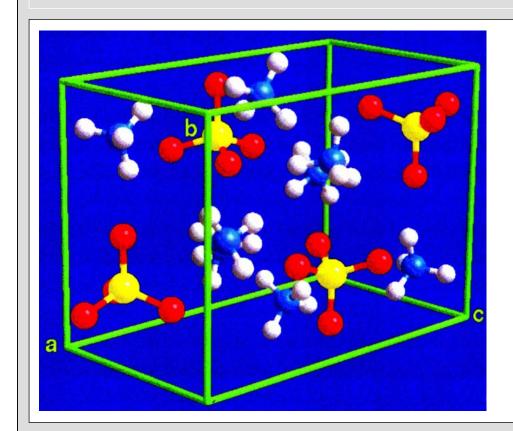
System	Achsen	Winkel	Beispiel
Kubisch (regulär)	a=b=c	$\alpha = \beta = \gamma = 90^{\circ}$	Steinsalz
Tetragonal	a=b; c	$\alpha = \beta = \gamma = 90^{\circ}$	weißes Zinn, TiO ₂ , PbWO ₄
Rhombisch	a;b;c	$\alpha = \beta = \gamma = 90^{\circ}$	S (<368,7 K), KNO ₃ , BaSO ₄ ,
(orthorhombisch)	8,		K ₂ SO ₄
Monoklin	a;b;c	$\alpha = \gamma = 90^{\circ}; \beta$	S oberhalb von 368,7 K,
			CaSO ₄ ·2H ₂ O, Na ₂ B ₄ O ₇ ,
·	* * *	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Na ₃ AlF ₆
Trigonal	a = b = c	$\alpha = \beta = \gamma$	Calcit, α-SiO ₂ (Quarz),
(rhomboedrisch)			Mg(CO ₃) ₂ (Magnesit),
, , , , , , , , , , , , , , , , , , , ,	8 9		NaNO ₃ , As, Sb, Be
Hexagonal	a=b; c	$\alpha = \beta = 90^{\circ};$	Eis, Graphit, β-SiO ₂ , Zn, Cd,
		$y = 120^{\circ}$	Mg
Triklin	a; b; c	α; β; γ	K ₂ Cr ₂ O ₇ , CuSO ₄ ·5H ₂ O


Tab. 21.1 Die 7 Kristallsysteme.

aus: Moore, Hummel Physikalische Chemie, 1983

Beispiel Aragonit

Beispiel Aragonit


CaCO₃

orthorhombisch $\alpha = \beta = \chi = 90^{\circ}$

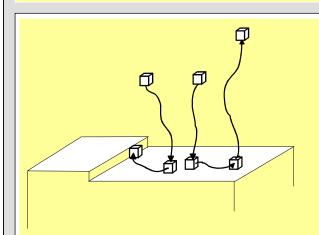
M = 4

a = 4,94 Å b = 7,94 Åc = 5,72 Å

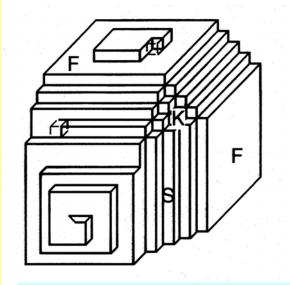
Beispiel Ammoniumsulfat

 $(NH_4)_2SO_4$

orthorhombisch $\alpha = \beta = \chi = 90^{\circ}$


M = 4

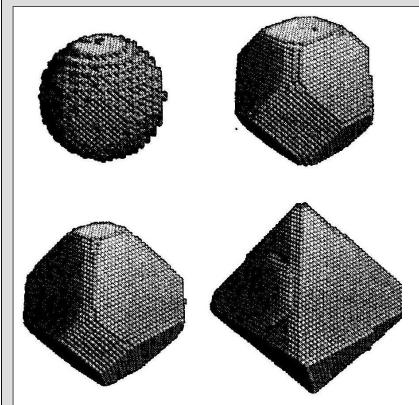
a = 5,97 Å


b = 10,61 Å

c = 7,78 Å

2. Wachstums- und Keimbildungskinetik

An-Transport
Adsorption
Oberflächen-Diffusion
Desorption und Ab-Transport
oder
permanenter Einbau

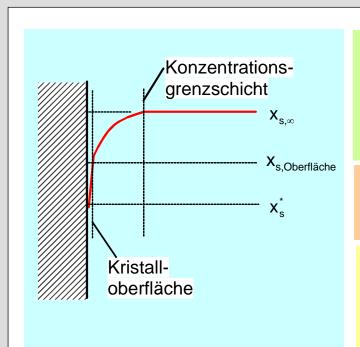

Kink

Step

Flat

unterschiedliche Kristallflächen wachsen mit unterschiedlichen Mechanismen

"Computer-Kristallisation"


Monte-Carlo Simulation des Wachstums eines zunächst kugelförmigen Kristalls.

Ausbildung von Flächen aufgrund flächenspezifischer Wachstumsgeschwindigkeiten.

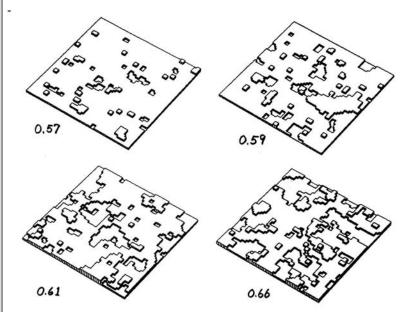
Langsam wachsende Flächen werden groß!

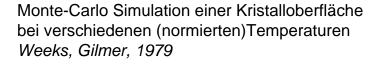
Gilmer, 19xx

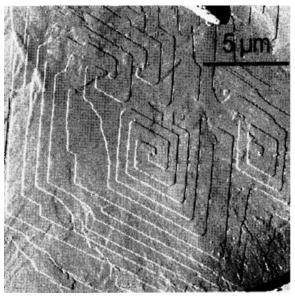
Stofftransport und Einbaureaktion

"einseitiger" Stofftransport mit Einbaureaktion

$$\dot{\mathbf{m}} = \beta \mathbf{A} \rho_{l} \ln \frac{1 - \mathbf{X}_{s,\infty}}{1 - \mathbf{X}_{s,Oberfläche}}$$

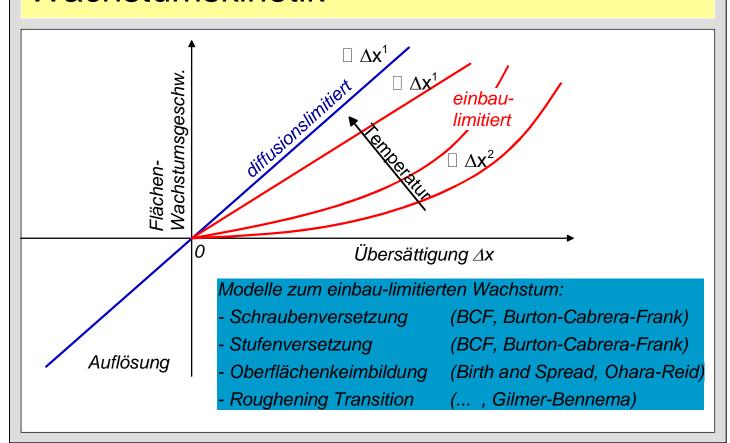

wenn x_s <<, dann:

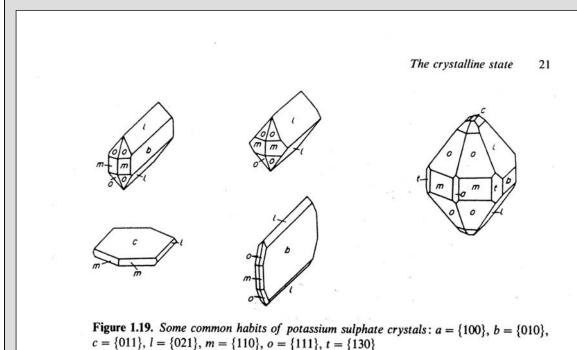

$$\dot{\mathbf{m}} = \beta \mathbf{A} \rho_{\mathsf{I}} \Big(\mathbf{X}_{\mathsf{s},\infty} - \mathbf{X}_{\mathsf{s},\mathsf{Oberfläche}} \Big)$$


in gerührten Suspensionen (Herndl, 1985)

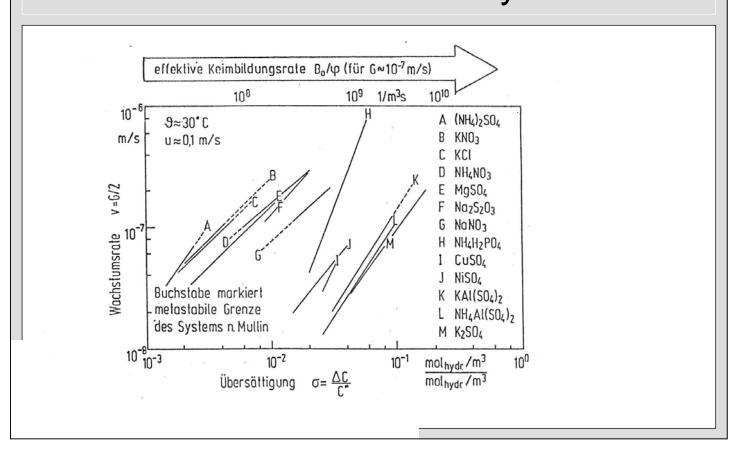
Sh =
$$\frac{\beta d_p}{D_{S,LM}}$$
 = 2 + 0,8 $\left(\frac{\mathcal{E} d_p^4}{v^3}\right)^{0,2} Sc^{1/3}$

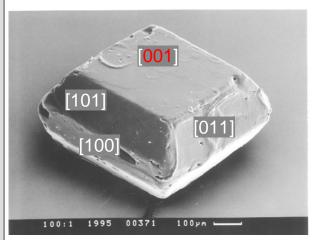
Kristalloberflächen

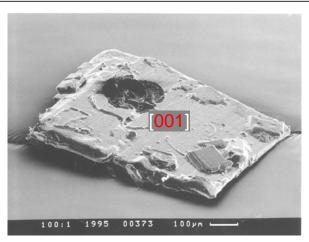




{001}-Oberfläche von wachsendem Paraffin n-C40H82 (AFM-Aufnahme) van Hoof, 1998

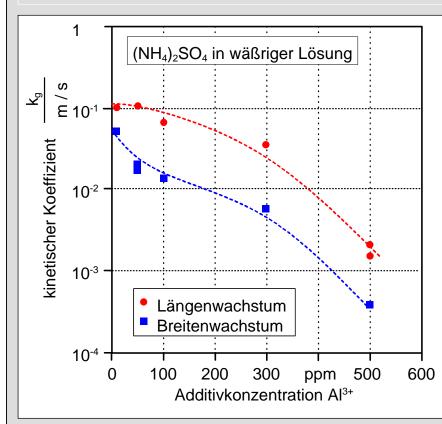

Wachstumskinetik


Wachstumsformen von K₂SO₄


Wachstumskinetik von Stoffsystemen

Additiv beeinflußt Habitus (1)

aus reiner Lösung

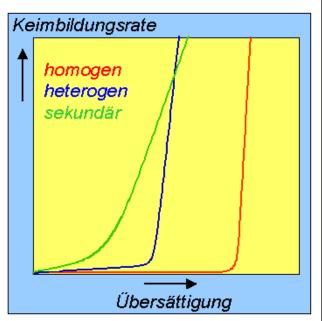


mit 10 ppm Amaranth

Adsorptionsenergie von Amaranth auf Kristallfläche

[001] 60 kJ/mol [101], [100], [011] ~ 45 kJ/mol

Additiv beeinflußt Habitus (2)


$$G = k_g \sigma^2$$

$$k_g = \frac{G}{\sigma^2}$$

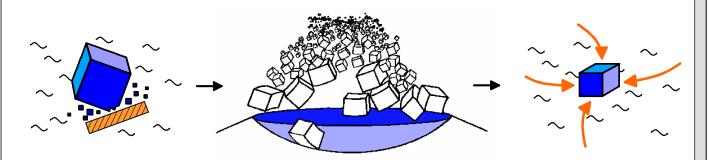
siehe: Rauls et al., 2000, Fig. 12

Keimbildungskinetik

Primäre Keimbildung

Homogene Keimbildung

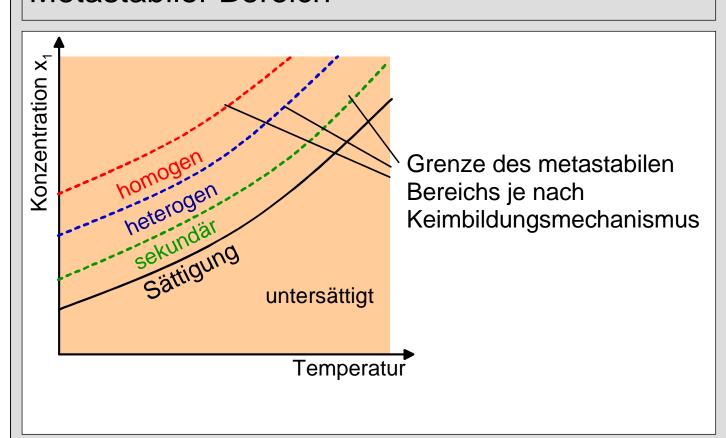
$$B_{hom} = 1.5D_{AB} \left(cN_{A} \right)^{7/3} \left(\frac{\gamma_{cl}}{k_{B}T} \right)^{0.5} V_{m} e^{-\frac{16}{3}\pi \left(\frac{\gamma_{cl}}{k_{B}T} \right)^{3} V_{m}^{2} \frac{1}{(\ln S)^{2}}}$$


 ΔG_{hom}

Heterogene Keimbildung

verringerte Keimbildungsarbeit auf Fremdstoffoberfläche

$$\Delta G_{het} = f \Delta G_{hom};$$
 $0 < f < 1$


Sekundäre Keimbildung

Kollision von Kristallen mit Rührerblatt, Pumpenlaufrad

Entstehung von Abriebspartikeln Wachstum der Abriebspartikel je nach innerem Spannungszustand

Metastabiler Bereich

Fällung - Definition

In der flüssigen Phase entsteht durch
chemische Reaktion
Ionen Reaktion
Verdrängung
ein schwerlösliches Produkt, welches übersättigt ist
und deshalb als Feststoff ausfällt.

$$A_{gel.}$$
 $P_{gel., "ubers" attigt}$
 $P \rightarrow P$

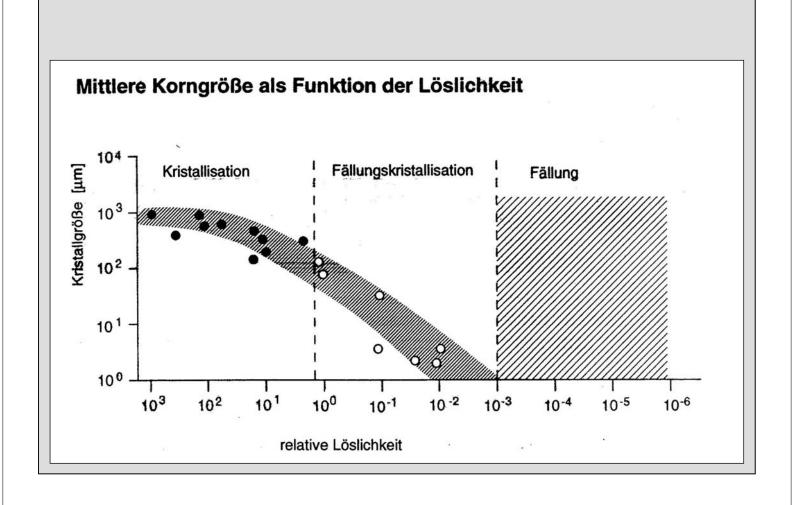
z.B.: Ba²⁺ + SO₄²⁻
$$\rightarrow$$
 BaSO₄ \downarrow

schwer lösliche Produkte

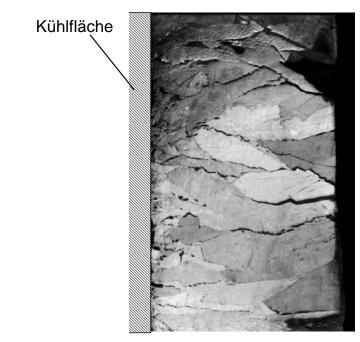
Schwer lösliche Produkte können nicht durch Kühlungs-/ Verdampfungskristallisation in technisch sinnvollen Mengen erzeugt werden! Dazu sind die Feed-Lösungen wegen der kleinen Löslichkeit zu niedrig konzentriert. Sie müssen gefällt werden!

Bei der Fällung kommt es zu hohen Übersättigungen, da c* sehr klein ist → hohe Keimbildungsrate → kleine Partikel

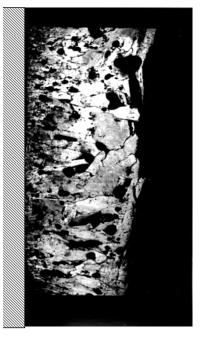
Schwerlösliche Produkte ermöglichen niedrige Restlöslichkeit, d.h. hohe Ausbeute (→ Pharma).


Schwerlösliche Produkte erlauben die Erzeugung von sehr kleinen Partikeln (Nano-Partikeln)

Übersättigung


Übersättigungsverhältnis

$$S_i = \frac{c_i}{c_i^{\star}}$$


- → je niedriger die Löslichkeit c_i*, desto höher die Übersättigung S_i!
- → je höher die Übersättigung S_i, desto höher die Keimbildungsrate! (heterogene, homogene Keimbildung)
- → je höher die Keimbildungsrate, desto kleiner die Partikel!
- → je kleiner die Partikel, desto höher die Aggregations-/ Agglomerationsneigung

Morphologie von Kristallschichten bei der gerichteten Kristallisation

Schnelles Wachstum

Dendritisches Kristallwachstum

Dendritisches Wachstum kann auftreten beim Kristallwachstum aus

- unterkühlter Schmelze
- Mehrkomponentensystemen